

KTS1656

Surge Protected, Single Input, Dual Output Load Switch with OVP

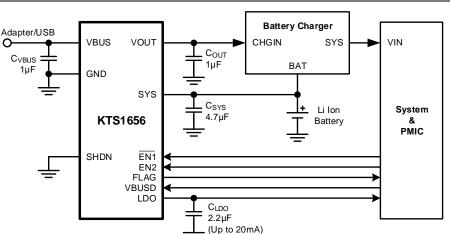
Features

- Single Input, Dual Output Low-Ron Switch
 - ► VBUS to VOUT: 20mΩ typ
 - VBUS to SYS: 35mΩ typ
 - ► Reverse Blocking on Both Switch Paths
- Wide Input Voltage Range: 2.7V 13.2V
- ► VBUS Abs Max: -6V to 28V
- Surge Protected VBUS
 - ▶ IEC61000-4-5: > ±200V
- ESD Protection
 - ► IEC61000-4-2 (Level 4) VBUS
 - Contact: ±8kV
 - Air Gap: ±15kV
 - ► HBM: 2kV All Pins
- Integrated Over-voltage Protection (OVP)
 - ▶ VBUS to VOUT: 13.9V
 - VBUS to SYS: 5.25V
- Maximum Continuous Current
 - ► VBUS to VOUT: 3.5A
 - VBUS to SYS: 6A
- OTG Compatible Power-Up
- Dual Enable Control with Independent Shutdown Control
 - Active LOW VBUS to VOUT
 - Active HIGH VBUS to SYS
- Active HIGH Shutdown
- VBUS detection LDO
- VBUS to SYS FLAG
- VBUS Active Discharge Control Input
- Over Temperature Protection
- Pb-free 42-Bump, WLCSP 2.71mm x 3.01mm
- -40°C to 85°C Operating Temperature Range

Typical Application

The KTS1656 features two low resistance power switches configured as single input, dual output, change-over switch. The input to both switches is protected against VBUS surge voltages of up to $\pm 200V$, and is also protected against over-voltage, with preset trip points on both the VBUS-to-VOUT and VBUS-to-SYS paths, providing protection to downstream components from abnormal input conditions.

The main switch (VBUS-to-VOUT) is an active-LOW enabled, reverse-blocking 3.5A rated MOSFET, with an OVP trip point of 13.9V. The secondary switch (VBUS-to-SYS) is an active-HIGH enabled, reverse-blocking, 6.0A rated MOSFET, with an OVP trip point of 5.25V. The VBUS input is rated from -6V to 28V.

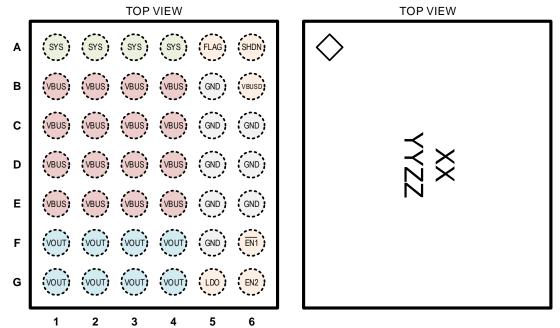

When VBUS is greater than 2.5V typ, the LDO output provides an "always ON" power source, regardless of the OVLO, EN1 and EN2 state, to power downstream components, thereby permitting operation without an installed battery.

The KTS1656 also features an active-HIGH SHDN pin to conserve power and an over-temperature thermal protection.

The KTS1656 is packaged in advanced, fully "green" compliant, 2.71 x 3.01mm, Wafer-Level Chip-Scale Package (WLCSP).

Applications

- Smartphones and Tablets
- Mobile Internet Devices
- Wearables and other Portable Devices



Pin Descriptions

Pin #	Name	Function
B1-B4, C1-C4, D1-D4, E1-E4	VBUS	Input to the power switches and device supply
F1-F4, G1-G4	VOUT	Power switch output to load
A1-A4	SYS	Power switch output to battery
G5	LDO	Regulated output whenever VBUS is present and SHDN is low
A5	FLAG	Active HIGH CMOS output whenever VBUS-to-SYS path is enabled and not in OVLO
G6	EN2	Active HIGH enable with internal $1M\Omega$ pull-down, for VBUS to SYS path only
F6	EN1	Active LOW enable with internal $1M\Omega$ pull-down, for VBUS to VOUT path only
A6	SHDN	Active HIGH input with internal $1M\Omega$ pull-down, for device shutdown
B6	VBUSD	Active HIGH analog input to gate of VBUS active discharge FET with internal $1M\Omega$ pull-down
B5, C5, C6, D5, D6, E5, E6, F5	GND	Ground

42-Bump 2.71mm x 3.01mm x 0.62mm WLCSP Package, 0.4mm pitch

Top Mark WW = Device ID Code = LA XX = Date Code, YY = Assembly Code ZZZZ = Serial Number

Absolute Maximum Ratings¹

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Description	Value	Units
	VBUS to GND (continuous)	-6 to 28	
VBUS	VBUS to VOUT (continuous)	-6 to 28	V
	VBUS to SYS (continuous)	-11	
		-0.3 to VBUS+0.3	V
SYS SYS to GND		-0.3 to 6	V
SHDN, EN1, EN2, LDO, FLAG, VBUSD	SHDN, EN1, EN2, LDO, FLAG, VBUSD to GND	-0.3 to 6	V
	VBUS to VOUT Continuous Current	3.5	А
VB03-V001 Cullent	VBUS to VOUT Peak Current (5ms)	ND (continuous)-6 to 28OUT (continuous)-6 to 28(S (continuous))-11ND-0.3 to VBUS+0.3O-0.3 to 6(F, EN2, LDO, FLAG, VBUSD to GND-0.3 to 6OUT Continuous Current3.5OUT Peak Current (5ms)7.0(S Continuous Current6.0(S Peak Current (5ms)12.0(S Peak Current (5ms)-40 to 150(S Peature Range-55 to 150	А
	/BUS to VOUT (continuous)-6 to 28/BUS to SYS (continuous)-11/OUT to GND-0.3 to VBUS+0.3SYS to GND-0.3 to 6SHDN, EN1, EN2, LDO, FLAG, VBUSD to GND-0.3 to 6/BUS to VOUT Continuous Current3.5/BUS to VOUT Peak Current (5ms)7.0/BUS to SYS Continuous Current6.0/BUS to SYS Peak Current (5ms)12.0Operating Temperature Range-40 to 150Storage Temperature Range-55 to 150	А	
VOUT V SYS S SHDN, EN1, EN2, LDO, FLAG, VBUSD S VBUS-VOUT Current V VBUS-SYS Current V TJ C Ts S	VBUS to SYS Peak Current (5ms)	12.0	А
TJ	Operating Temperature Range	-40 to 150	°C
Ts	Storage Temperature Range	-55 to 150	°C
T _{LEAD}	Maximum Soldering Temperature (at leads, 10 sec)	260	°C

ESD and Surge Ratings²

Symbol	Description	Value	Units
Vesd_hbm	JEDEC JS-001-2017 Human Body Model (all pins)	±2	kV
Vesd_cd	IEC61000-4-2 Contact Discharge (VBUS)	±8	kV
Vesd_agd	IEC61000-4-2 Air Gap Discharge (VBUS)	±15	kV
VSURGE	IEC61000-4-5 Surge (VBUS to GND)	±200	V

Thermal Capabilities³

Symbol	Description	Value	Units
ΘJA	Thermal Resistance – Junction to Ambient	74	°C/W
PD	Maximum Power Dissipation at 25°C	1.7	W
$\Delta P_D / \Delta T$	Derating Factor Above $T_A = 25^{\circ}C$	13.6	mW/°C

Ordering Information

Part Number	Marking⁴	Operating Temperature	Package
KTS1656EUY-TR	LAXXYYZZZZ	-40°C to +85°C	WLCSP42

^{1.} Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any one time.

^{2.} ESD and Surge Ratings conform to JEDEC and IEC industry standards. Some pins may actually have higher performance. Surge ratings apply with chip enabled, disabled, or unpowered, unless otherwise noted.

^{3.} Junction to Ambient thermal resistance is highly dependent on PCB layout. Values are based on thermal properties of the device when soldered to an EV board.

^{4. &}quot;LAXXYYZZZZ" is the device ID code, date code, assembly code and serial number.

.

Electrical Characteristics⁵

Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40°C to +85°C, $V_{BUS} = 2.7V$ to 13.2V. Typical values are specified at room temperature (25°C) with $V_{BUS} = 5V$, $I_{VBUS} \le 2A$, SHDN = EN1 = EN2 = LOW, LDO = OPEN, $C_{VBUS} = 0.1\mu$ F, $C_{LDO} = 4.7\mu$ F and $T_A = 25^{\circ}$ C.

Input				-		
Symbol	Description	Conditions	Min	Тур	Max	Units
		$V_{BUS} = 5V, \overline{EN1} = EN2 = LOW$ (VOUT path normal operation)		220	290	-μA
le.	Input Quiescent Current	$V_{BUS} = 4V$, $\overline{EN1} = EN2 = HIGH$ (SYS path normal operation)		380	550	
lα		$V_{BUS} = 5.5V, \overline{EN1} = EN2 = HIGH,$ SYS = 0V (SYS path in OVLO)		240	320	
loupu		$V_{BUS} = 15V, \overline{EN1} = EN2 = LOW,$ VOUT = 0V (VOUT path in OVLO)		340	450	
ISHDN	Input Shutdown Current	$V_{BUS} = 5V$, SHDN = HIGH, internal 10M Ω from VBUS to GND		0.5	1	μA
R _{VBUS_SHDN}	Input Resistance in Shutdown	$V_{BUS} = 5V$, SHDN = HIGH, resistance from VBUS to GND	5	10		MΩ
M		Positive Reverse Working Voltage			28	V
VIN_WORKING	Input Clamp Working Voltage	$\begin{tabular}{ c c c c c } \hline V_{BUS} = 5V, \end{tabular} EN2 = LOW & (VOUT path normal operation) & 220 $		v		
M		$I_{IN} = 10mA, T_A = 25^{\circ}C$	30	32	34	v
Vin_clamp	Input Clamp Breakdown Voltage	$I_{IN} = -10 \text{mA}, T_A = 25^{\circ}\text{C}$	-10	-8	-6	v
M		+200V surge, T _A = 25°C		38		V
Vin_surge	Input Clamp Surge Voltage	-200V surge, T _A = 25°C		-6		V
	Linder Veltage Laskeut	V _{BUS} Rising	2.25	2.50	2.75	V
VBUS_UVLO	Under Voltage Lockout	Hysteresis		100		mV

OVP VBUS to VOUT

Symbol	Description	Conditions	Min	Тур	Max	Units
RON VOUT		$V_{BUS} = 5V$, $I_{VOUT} = 1A$, $T_A = 25^{\circ}C$		20	36	
RON VOUT	On-Resistance VBUS to VOUT	$V_{BUS} = 12V$, $I_{VOUT} = 1A$, $T_A = 25^{\circ}C$		20	36	mΩ
R _{ON_VOUT}		OTG mode, $V_{OUT} = 5V$, $I_{VBUS} = 1A$, $T_A = 25^{\circ}C$		20	36	
V _{VOUT_OVLO}	Over-Voltage Trip Level	V_{BUS} Rising, $T_A = 25^{\circ}C$	13.2	13.9	14.3	V

OVP VBUS to SYS

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{ON_SYS}	On-Resistance VBUS to SYS	$V_{BUS} = 3V$, $I_{VSYS} = 1A$, $T_A = 25^{\circ}C$		35	45	mΩ
Vsys_ovlo	Over-Voltage Trip Level	V_{BUS} Rising, $T_A = 25^{\circ}C$	5.0	5.25	5.5	V
ISYS_RB	SYS-to-GND Reverse Current	$V_{SYS}=4.4V,\ V_{BUS}=0V,\ T_A=25^\circ C$		0.1	1	μA
IVBUS_RB	SYS-to-VBUS Reverse Current ⁶	$V_{SYS} = 4.4V, V_{BUS} = 0V, T_A = 25^{\circ}C,$ measured at VBUS, no ambient light		75	2000	pА

^{5.} KTS1656 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range by design, characterization and correlation with statistical process controls.

^{6.} Guaranteed by characterization and design.

Electrical Characteristics (continue)⁵

Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40°C to +85°C, $V_{BUS} = 2.7V$ to 13.2V. Typical values are specified at room temperature (25°C) with $V_{BUS} = 5V$, $I_{VBUS} \le 2A$, SHDN = EN1 = EN2 = LOW, LDO = OPEN, $C_{VBUS} = 0.1\mu$ F and $T_A = 25$ °C.

LDO

LDO							
Symbol	Description	Conditions		Min	Тур	Max	Units
LDO		$V_{BUS} = 5V, I_{LDO} = 0mA$		3.6	4.0	4.4	V
		V _{BUS} = 15V, I _{LDO} = 0mA	25°C 3.6	3.6	4.0	4.4	
	LDO Output Voltage	$V_{BUS} = 5V$, $I_{LDO} = 100mA$		3.6	4.0	4.4	
		V _{BUS} = 15V, I _{LDO} = 100mA		3.6	4.0	4.4	
Ilk_ldo	LDO-to-GND Leakage Current	V _{LDO} = 5V, V _{BUS} = 0V, T _A = 25°C			0.01	1	μA
ILDO_VBUS	LDO-to-VBUS Leakage Current ⁶	$V_{LDO} = 5V$, $V_{BUS} = 0V$, $T_A = 2$ measured at VBUS, no amb			50	2000	pА

VBUS Active Discharge (VBUSD)

Symbol	Description	Conditions	Min	Тур	Max	Units
Symbol Rad Vih_vbusd Vil_vbusd Rvbusd_pd		V _{VBUSD} = 3V	115	215	315	Ω
	Active Discharge Resistance (measured from VBUS to GND)	V _{VBUSD} = 2V		575		Ω
		V _{VBUSD} = 1.5V		1.4		kΩ
		V _{VBUSD} = 1.4V		1.8		kΩ
		V_{VBUSD} = 1.2V, T_A = 0°C to +85°C	115 215 315 575 1.4	kΩ		
VIH_VBUSD	VBUSD Input High Voltage	$R_{AD} < 5k\Omega$, $T_A = 0^{\circ}C$ to +85°C	1.2			V
VIL_VBUSD	VBUSD Input Low Voltage	R _{AD} is high-Z			0.5	V
Rvbusd_pd	VBUSD Internal Pull-Down Resistor			1		MΩ

Digital Signals (FLAG, EN1, EN2, SHDN)

Symbol	Description	Conditions	Min	Тур	Max	Units
Vflag_oh	FLAG Output HIGH Voltage	$V_{BUS} = 5V, EN2 = HIGH$	1.65	1.85	2.05	V
Vflag_ol	FLAG Output LOW Voltage	$V_{BUS} = 5V, EN2 = LOW$			0.5	V
VIH	Logic Input HIGH Voltage	Veus = 2.7V to 13.2V	1.2			V
VIL	Logic Input LOW Voltage	VBUS = 2.7 V 10 13.2 V			0.35	v
ILK_LOGIC	Logic Input Leakage Current	$V_{BUS} = 5V$, VOUT and SYS = Float		5	9	μA
R _{PD}	EN1, EN2, SHDN Internal Pull- Down Resistor			1		MΩ

Thermal Shutdown⁶

Symbol	Description	Conditions	Min	Тур	Max	Units
	IC Junction Thermal Shutdown			150		°C
tj_⊤н	IC Junction Thermal Shutdown Hysteresis			20		°C

Electrical Characteristics (continue)⁵

Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40°C to +85°C, $V_{BUS} = 2.7V$ to 13.2V. Typical values are specified at room temperature (25°C) with $V_{BUS} = 5V$, $I_{VBUS} \le 2A$, SHDN = EN1 = EN2 = LOW, LDO = OPEN, $C_{VBUS} = 0.1\mu$ F and $T_A = 25$ °C.

TIMING CHARACTERISTICS (Figures 1-6)

VOUT

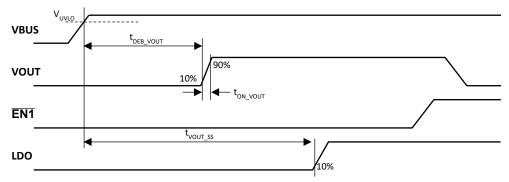
Symbol	Description	Conditions Min		Тур	Max	Units
t _{VOUT_} ss	VOUT Soft-Start Time	Time from $V_{BUS} = V_{BUS_UVLO}$ to 10% of LDO		30		ms
tdeb_vout	VOUT Debounce Time	Time from V _{BUS_UVLO} <v<sub>BUS<v<sub>OUT_OVLO to 10% of V_{OUT}</v<sub></v<sub>		15		ms
t _{ON_VOUT}	VOUT Switch Turn-on Time	Vout from 10% of V _{BUS} to 90% of V _{BUS} , R _L = 100 Ω , C _L = 22µF		2		ms
toff_vout	VOUT Switch Turn-off Time ⁶	$V_{BUS} > V_{OUT_OVLO}$ to V_{OUT} stop rising, $R_L = 100\Omega$, no C_{OUT} , $V_{BUS} = 5V_{DC} + 200V_{SURGE}$, $T_A = 25^{\circ}C$			100	ns

SYS

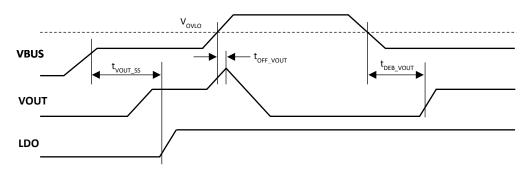
Symbol	Description	Conditions Min		Тур	Max	Units
tsys_ss	SYS Soft-Start Time	Time from $V_{BUS} = V_{BUS_UVLO}$ to 10% of FLAG 30			ms	
tdeb_sys	SYS Debounce Time	Time from V _{BUS_UVLO} <vbus<vout_ovlo above<br="" rise="" to="" vsys="">10% of VBUS</vbus<vout_ovlo>		15		ms
ton_sys	SYS Switch Turn-on Time	Time for V _{SYS} to rise from 10% to 90% of V _{BUS} , $R_L = 100\Omega$, $C_L = 22\mu F$		2		ms
toff_sys	SYS Switch Turn-off Time ⁶	$V_{BUS} > V_{SYS_OVLO}$ to V_{SYS} stop rising, $R_L = 100\Omega$, no C_{SYS} , $V_{BUS} = 5V_{DC} + 200V_{SURGE}$, $T_A = 25^{\circ}C$			100	ns

VBUS Discharge (VBUSD)

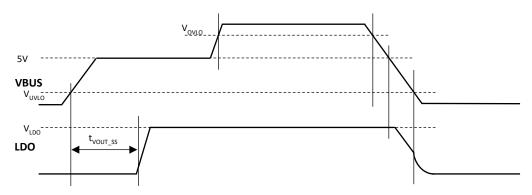
Symbol	Description	Conditions	Min	Тур	Max	Units	
tvbus_vbusd	VBUS (VBUSD) Discharge Turn-on Time	Vout = $5V \rightarrow 0V$, C _{VBUS} = 1μ F, VBUSD= $\overline{EN1} = 0V \rightarrow 3V$, time for V _{BUS} to fall below 0.8V		600		μs	
tvbusd_off	VBUS (VBUSD) Discharge Turn-off Time	Vout = 5V, C _{VBUS} = 1 μ F, VBUSD= EN1 = 3V \rightarrow 0V, time for V _{BUS} to rise to 10% of V _{OUT}		15		ms	

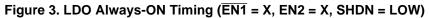

OTG

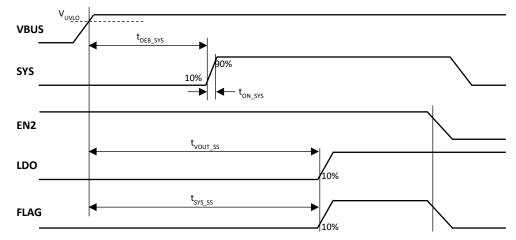
Symbol	Description	Conditions	Min	Тур	Max	Units
tdon_otg	OTG Turn-on Delay (Debounce) Time	V_{OUT} = 5V, C _{VBUS} = 1µF, R _L = 10Ω, EN1 = HIGH→LOW, time for V _{BUS} to rise above 10% of V _{OUT}		15		ms
ton_otg	OTG Turn-on Time	V_{OUT} = 5V, C_{VBUS} = 1µF, R_L = 10Ω, EN1 = HIGH→LOW, time for V _{BUS} to rise from 10% to 90% of V _{OUT}		300		μs
tdoff_otg	OTG Turn-off Delay (Debounce) Time	V_{OUT} = 5V, C _{VBUS} = 1µF, R _L = 1kΩ, EN1 = LOW→HIGH, time for V _{BUS} to fall below 80% of V _{OUT}		500		μs
toff_otg OTG Turn-off Time				2		ms

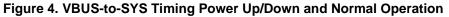


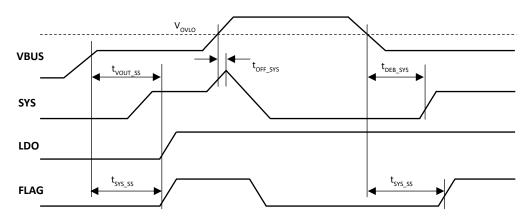
Timing Diagrams

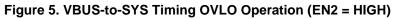

VBUS-to-VOUT

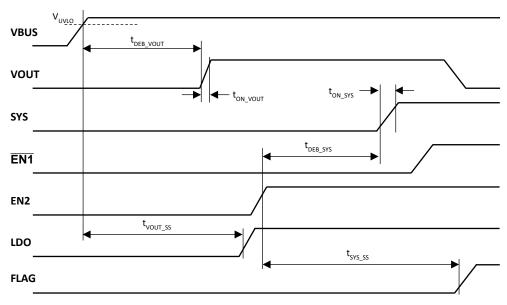


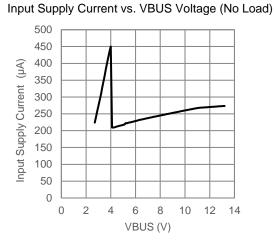


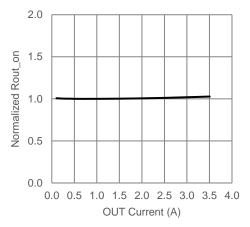




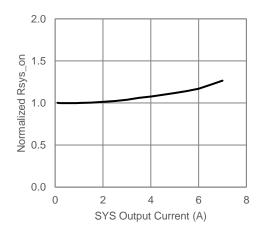


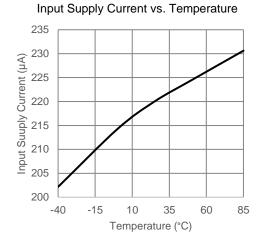

VBUS-to-SYS



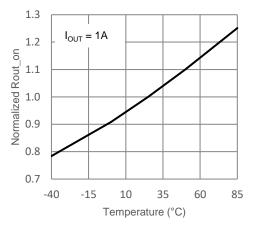


Typical Characteristics

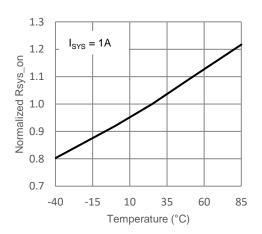

 $V_{\text{BUS}} = 5V, C_{\text{VBUS}} = 1\mu F, C_{\text{VOUT}} = 1\mu F, C_{\text{SYS}} = 10\mu F, C_{\text{LDO}} = 4.7\mu F, T_{\text{A}} = 25^{\circ}C \text{ unless otherwise specified.}$



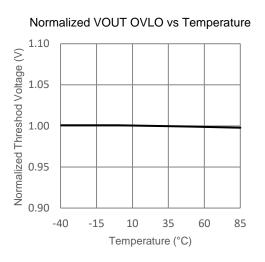
Normalized RVOUT_ON vs Output Current

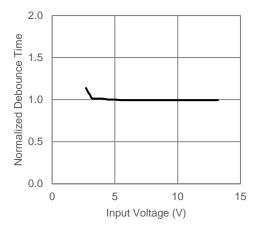


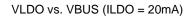
Normalized R_{SYS_ON} vs Output Current

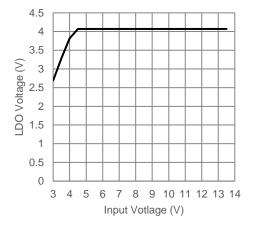


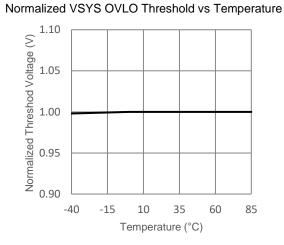
Normalized RVOUT_ON vs. Temperature


Normalized R_{SYS_ON} vs. Temperature

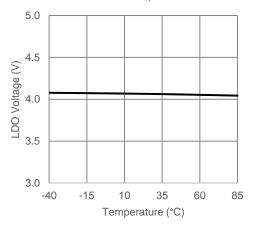


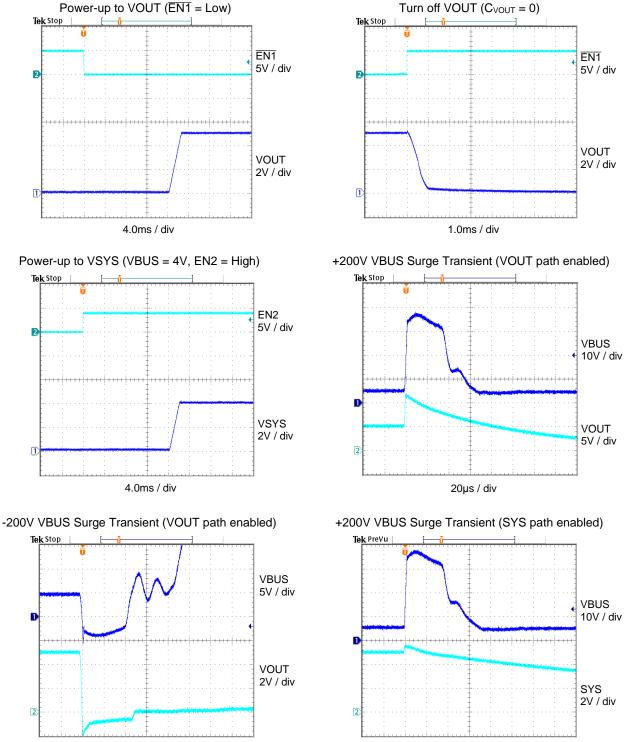

Typical Characteristics (continued)


VBUS = 5V, $C_{VBUS} = 1\mu F$, $C_{VOUT} = 1\mu F$, $C_{SYS} = 10\mu F$, $C_{LDO} = 4.7\mu F$, $T_A = 25^{\circ}C$ unless otherwise specified.

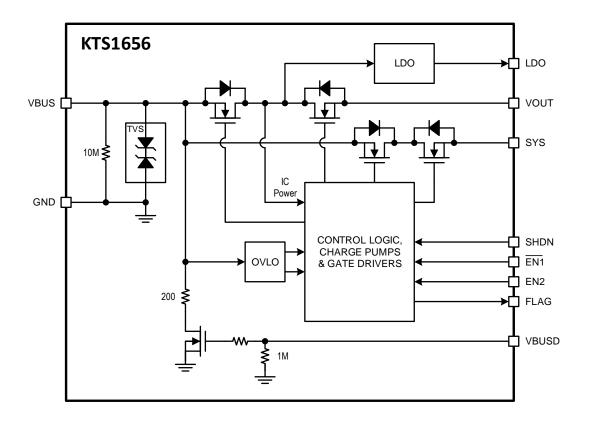


Normalized Debounce Time vs. VBUS




VLDO vs Temperature

Typical Characteristics (continued)


January 2020 - Revision 04a

20µs / div

KTS1656

Functional Block Diagram

Functional Description

The KTS1656 features two low resistance power switches configured as single input, dual output, change-over switch. The input to both switches is protected against VBUS surge voltages of up to ±200V, and is also protected against over-voltage, with preset trip points on both the VBUS-to-VOUT and VBUS-to-SYS paths, providing protection to downstream components from abnormal input conditions.

The main switch (VBUS to VOUT) features an active–LOW enabled, reverse-blocking 3.5A rated MOSFET, with an OVP trip point of 13.9V. The secondary switch (VBUS to SYS) is an active-HIGH enabled, reverse-blocking 6.0A rated MOSFET, with an OVP trip point of 5.25V. The input to both switches is rated up to a maximum of 28V and minimum of -6V and includes a 15ms debounce time, ensuring that the input VBUS input is stable.

When VBUS is greater than the UVLO of typically 2.5V, the LDO output provides an "always ON" power source, regulated to typically 4.0V, regardless of the status of OVLO, EN1 and EN2, to power downstream components permitting operation without an installed battery. The LDO can supply up to 100mA of output current.

The KTS1656 can be powered up from VBUS or VOUT to enable operation in systems that support OTG.

The KTS1656 also features an active-HIGH shutdown pin (SHDN) to conserve power, plus over-temperature thermal protection circuitry with hysteresis.

An active HIGH, CMOS FLAG is asserted whenever the SYS switch is active and is in a normal operating mode. The FLAG is de-asserted when the SYS switch is OFF due to either EN2 = LOW, VBUS is in UVLO or OVLO, thermal shutdown or SHDN = HIGH.

The truth table for KTS1656 is shown in Table 1 below.

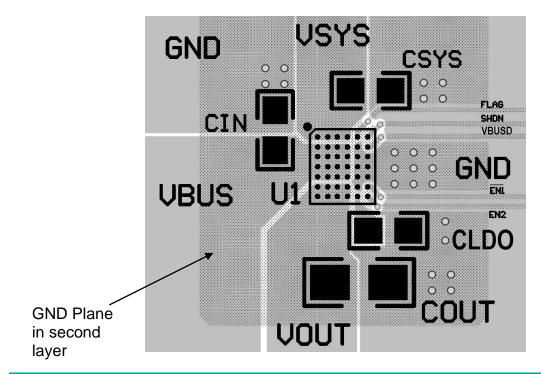
Table 1. KTS1656 Truth Table

	EN1	EN2	VOUT	SYS		
SHDN	(VOUT)	(SYS)	SW	SW	FLAG	LDO
0	0	0	ON	OFF	LOW	ON
0	1	0	OFF	OFF	LOW	ON
0	0	1	ON	ON	HIGH	ON
0	1	1	OFF	ON	HIGH	ON
1	Х	Х	OFF	OFF	LOW	OFF

X = Don't Care

For USB Power Delivery, the KTS1656 features an active discharge for the VBUS node. When the VBUSD analog input is driven HIGH, VBUS is discharged from as high as 20V to below 0.8V within 650ms, with sufficient margin for any excess capacitance on VBUS due to the compliance test equipment.

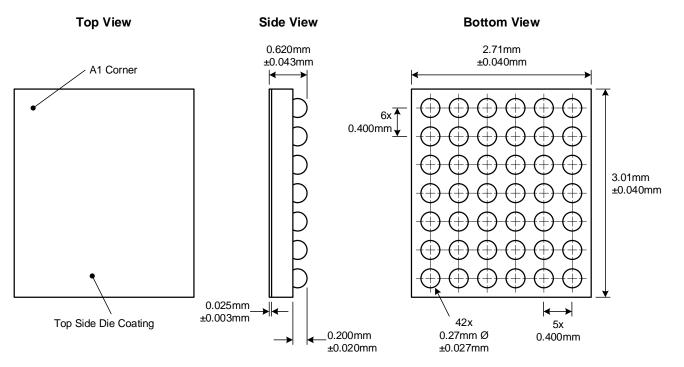
Application Information

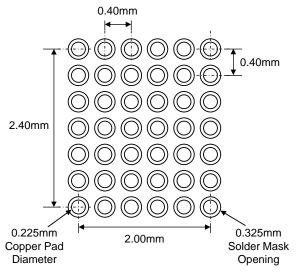

Capacitor Selection

The LDO pin requires a capacitor for stabilizing the internal LDO's operation and storing the charge for load transients. Use a 4.7μ F, 10V rated, low ESR, X5R ceramic capacitor for best performance. If the load on LDO is less than 20mA, a 2.2μ F ceramic capacitor is sufficient to reduce the solution size.

Capacitors on VBUS, VOUT and SYS supply current for transient load and should be sized according to the transient current requirements. Use X5R ceramic capacitors due to their low variation with temperature and DC bias. Use 1μ F or higher for VBUS and VOUT, and 4.7μ F or higher for SYS. To avoid over-voltage stress on VBUS's capacitor during surge, use a 50V rated capacitor.

Recommended Layout


It is recommended to place all capacitors close to the IC and the trace length to VBUS, OUT, SYS or LDO pin and the IC GND should be minimized.


Packaging Information

WLCSP67-42 (2.71mm x 3.01mm x 0.620mm)

Recommended Footprint

(NSMD Pad Type)

* Dimensions are in millimeters.

Kinetic Technologies cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Kinetic Technologies product. No intellectual property or circuit patent licenses are implied. Kinetic Technologies reserves the right to change the circuitry and specifications without notice at any time.